Serveur d'exploration sur les pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.

Identifieur interne : 000848 ( Main/Exploration ); précédent : 000847; suivant : 000849

Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.

Auteurs : Upinder S. Gill [États-Unis] ; Srinivasa R. Uppalapati [États-Unis] ; Jin Nakashima [États-Unis] ; Kirankumar S. Mysore [États-Unis]

Source :

RBID : pubmed:25953307

Descripteurs français

English descriptors

Abstract

BACKGROUND

Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium.

RESULTS

We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust.

CONCLUSION

In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.


DOI: 10.1186/s12870-015-0502-9
PubMed: 25953307
PubMed Central: PMC4424542


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.</title>
<author>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. ugill@noble.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uppalapati, Srinivasa R" sort="Uppalapati, Srinivasa R" uniqKey="Uppalapati S" first="Srinivasa R" last="Uppalapati">Srinivasa R. Uppalapati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. srinivasaraou@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Current address: Biologicals and Fungicide Discovery, DuPont Crop Protection, Newark, DE 19711, USA. srinivasaraou@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Current address: Biologicals and Fungicide Discovery, DuPont Crop Protection, Newark, DE 19711</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakashima, Jin" sort="Nakashima, Jin" uniqKey="Nakashima J" first="Jin" last="Nakashima">Jin Nakashima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. jnakashima@noble.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mysore, Kirankumar S" sort="Mysore, Kirankumar S" uniqKey="Mysore K" first="Kirankumar S" last="Mysore">Kirankumar S. Mysore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. ksmysore@noble.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25953307</idno>
<idno type="pmid">25953307</idno>
<idno type="doi">10.1186/s12870-015-0502-9</idno>
<idno type="pmc">PMC4424542</idno>
<idno type="wicri:Area/Main/Corpus">000797</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000797</idno>
<idno type="wicri:Area/Main/Curation">000797</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000797</idno>
<idno type="wicri:Area/Main/Exploration">000797</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.</title>
<author>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. ugill@noble.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uppalapati, Srinivasa R" sort="Uppalapati, Srinivasa R" uniqKey="Uppalapati S" first="Srinivasa R" last="Uppalapati">Srinivasa R. Uppalapati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. srinivasaraou@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Current address: Biologicals and Fungicide Discovery, DuPont Crop Protection, Newark, DE 19711, USA. srinivasaraou@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Current address: Biologicals and Fungicide Discovery, DuPont Crop Protection, Newark, DE 19711</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakashima, Jin" sort="Nakashima, Jin" uniqKey="Nakashima J" first="Jin" last="Nakashima">Jin Nakashima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. jnakashima@noble.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mysore, Kirankumar S" sort="Mysore, Kirankumar S" uniqKey="Mysore K" first="Kirankumar S" last="Mysore">Kirankumar S. Mysore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. ksmysore@noble.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401</wicri:regionArea>
<wicri:noRegion>73401</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Brachypodium (microbiology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (pathogénicité)</term>
<term>Brachypodium (microbiologie)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Brachypodium</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Brachypodium</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genes, Fungal</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Gènes fongiques</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25953307</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.</ArticleTitle>
<Pagination>
<MedlinePgn>113</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-015-0502-9</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gill</LastName>
<ForeName>Upinder S</ForeName>
<Initials>US</Initials>
<AffiliationInfo>
<Affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. ugill@noble.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Uppalapati</LastName>
<ForeName>Srinivasa R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. srinivasaraou@yahoo.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Current address: Biologicals and Fungicide Discovery, DuPont Crop Protection, Newark, DE 19711, USA. srinivasaraou@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakashima</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. jnakashima@noble.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mysore</LastName>
<ForeName>Kirankumar S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA. ksmysore@noble.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058431" MajorTopicYN="N">Brachypodium</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25953307</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-015-0502-9</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-015-0502-9</ArticleId>
<ArticleId IdType="pmc">PMC4424542</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22716957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):946-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21639892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1539-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Mar;16(3):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):1025-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 May;139(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Mar 27;235(4796):1659-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17795599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Oct;24(10):1143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 May;16(5):398-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23441218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):147-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Sep 1;3(5):371-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:407-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):353-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22294617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e41916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Feb;9(2):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 May;105(5):580-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25626072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1858-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18567827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):353-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2012 Feb;55(2):152-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22321152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jul 1;5(4):253-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):551-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(6):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Delaware</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
</noRegion>
<name sortKey="Mysore, Kirankumar S" sort="Mysore, Kirankumar S" uniqKey="Mysore K" first="Kirankumar S" last="Mysore">Kirankumar S. Mysore</name>
<name sortKey="Nakashima, Jin" sort="Nakashima, Jin" uniqKey="Nakashima J" first="Jin" last="Nakashima">Jin Nakashima</name>
<name sortKey="Uppalapati, Srinivasa R" sort="Uppalapati, Srinivasa R" uniqKey="Uppalapati S" first="Srinivasa R" last="Uppalapati">Srinivasa R. Uppalapati</name>
<name sortKey="Uppalapati, Srinivasa R" sort="Uppalapati, Srinivasa R" uniqKey="Uppalapati S" first="Srinivasa R" last="Uppalapati">Srinivasa R. Uppalapati</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000848 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000848 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25953307
   |texte=   Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25953307" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 09:39:13 2020. Site generation: Fri Nov 20 09:41:54 2020